LATT: Large Aperture Telescope Technology

from ground adaptive secondaries

to a space active primary

Xompero, M., Briguglio, R., Lisi, F., Arcidiacono, C., Riccardi, A.

The LATT Team

CGS S.p.A.: coordinator

C.Vettore, F. Duo

MICROGATE

ADS International: mech. System

D.Gallieni, M.Tintori, P.Lazzarini

R. Biasi, C.Patauner

,

CNR-INO Italian Optics Inst.: *shell* F. D'Amato, M. Pucci

Solveitor

FSA

INAF-Italian Astrophysics Inst.:

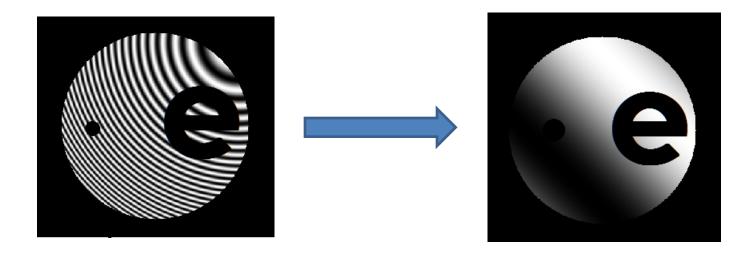
AO expertise+optical testing

MICROGATE: *electr.*+*control*

systems+testing

R. Briguglio, M. Xompero, A. Riccardi, F. Lisi

L. Maresi, A. Zuccaro Marchi, J. Pereira do Carmo

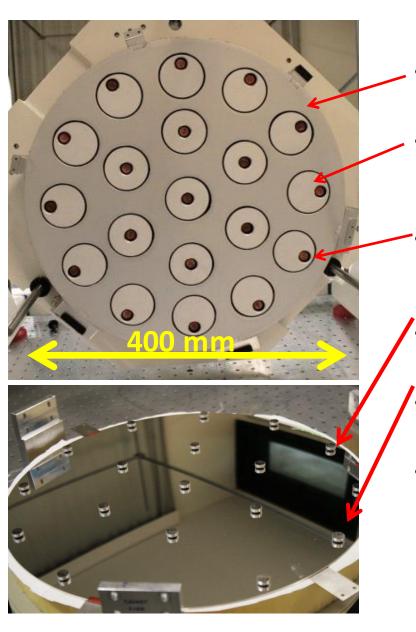

LATT?

Concept and demonstrator

- Is our response to the needs of space mirrors:
 - Large format
 - Possibly deployable/segmented
 - Lightweighted
 - Actively shaped
- Scientific cases
 - Astronomical telescope
 - LIDAR
 - Earth monitoring
 - Telecommunications

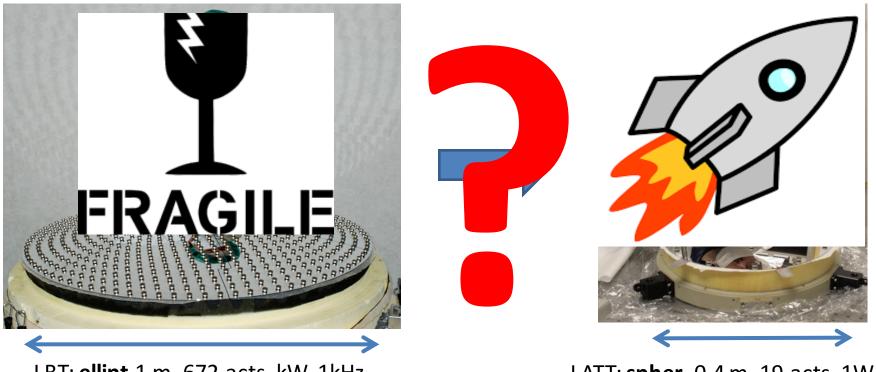
Preliminary study: * ALC project in 2007 LATT prototyping: * ESTEC/Contract No. 22321/09/NL/RA Expertise from LBT672, DSM, M4DP: Technologies, strategies, procedures

Actually our secret goal was to fix the ESA logo!!!



LATT can handle it!

Project status

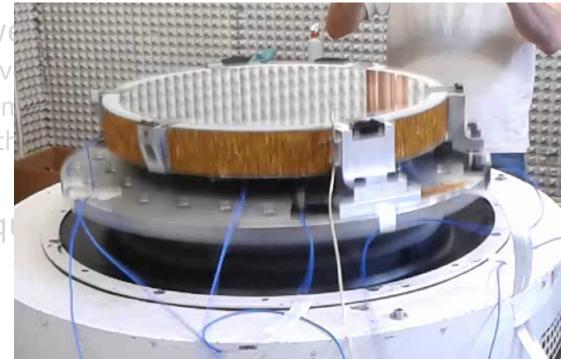

- Ended in october 2015 with final review @ESA-ESTEC:
 - Lightweigth: better than JWST
 - Actuator stroke >> competitors
 - Power consumption: almost negligible
 - Concept: very attractive for future developments
- Presented at Space Active Optics @ESTEC (nov.2015)
 - Unique of large format, deformable
 - Unique concept addressing segmentation
 - Unique applicable to primary mirror concept

LATT: 400mm, F/6 sphere, 19 acts

- CFRP+AI honeycomb Reference Body (<9 kg/m2)
- Co-located, contactless, position capacitive sensors (8 nm precision)
- Contactless, voice-coil motors (<55mW, 1mm stroke, , ± 0.24 N and 0.08N for flat)
- Low print-through glued magnet (19 acts)
- Thin glass shell (400mm diam x 1 mm th., F/6)
- 1 single cable, 1 small electronics box (15W) (providing local control loop and launch safety mechanism for the thin shell)

From adaptive secondaries to a space active primary

LBT: **ellipt.**1 m, 672 acts, kW, 1kHz VLT: **asph**. 1.2 m, 1170 acts, kW, 1kHz

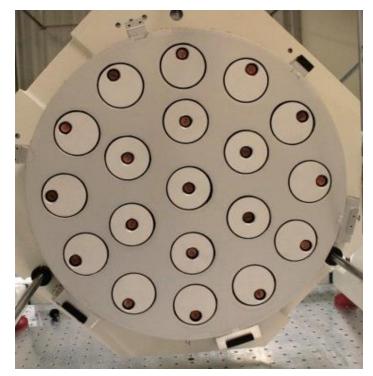

LATT: **spher**. 0.4 m, 19 acts, 1W, 1Hz & <u>new hair cap</u>, *ton sur ton*

Solutions validated, towards TRL 5

• Shell electrostatic locking:

The shell is electrically 'glued' on the RefBody during launch

- Reduced powe Contactless, v (<55mW, 1mn Low bandwith
- Goal optical q

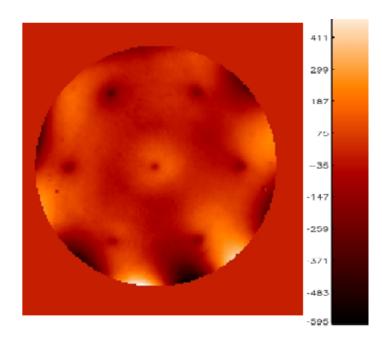


Solutions validated, towards TRL 5

• Shell electrostatic locking:

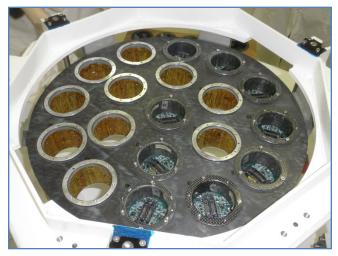
The shell is electrically 'glued' on the RefBody during launch

- Reduced power consumption Contactless, voice-coil motors (<55mW, 1mm stroke) Low bandwith smart actuators
- Goal optical quality

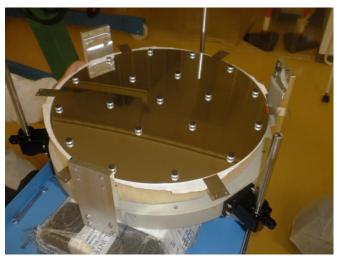


Solutions validated, towards TRL 5

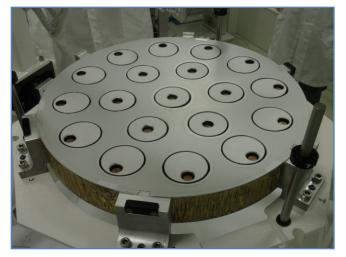
• Shell electrostatic locking:

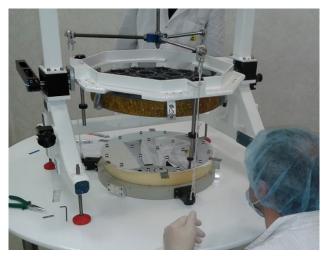

The shell is electrically 'glued' on the RefBody during launch

- Reduced power consumption Contactless, voice-coil motors (<55mW, 1mm stroke) Low bandwith smart actuators
- Goal optical quality



- Stability checked
- Comparable with ground based technology: flattened 30 nm RMS WFE


LATT - integration

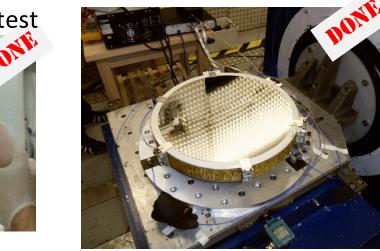

Actuator cups mounted on the aluminum honeycomb

Actuator magnets glued on the shell

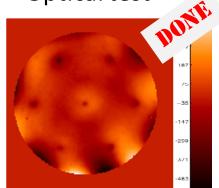
Reference body front surface with capacitive sensor

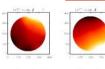
Shell mounted on the reference body

Laboratory test campaign

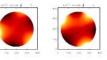

Temperature range: -25°C→55°C

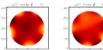
Thermo-vacuum test

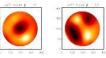

Tested @ 1e-5mbar


Vibration test

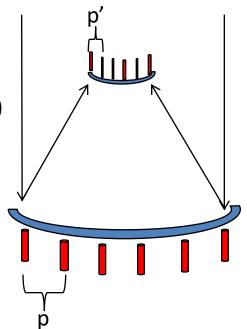
Max acceler.: 10g


Optical test





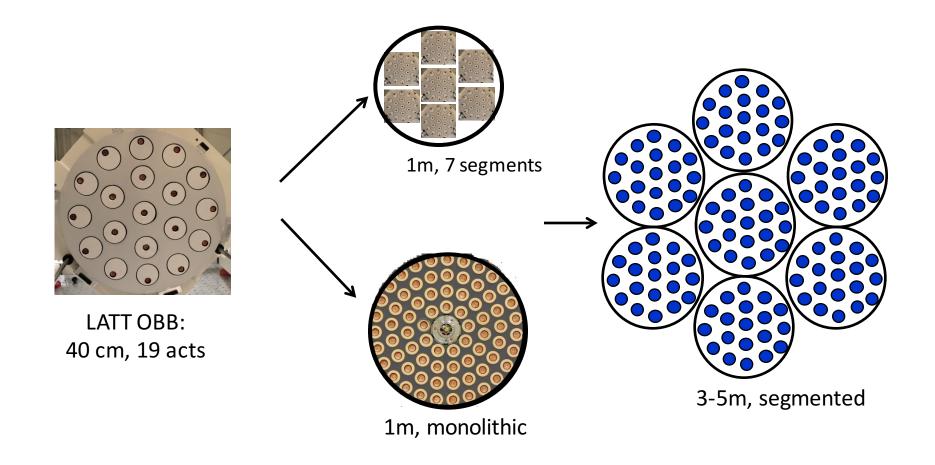
WFE comparable with AO after removing the membranes deformation ($\lambda/6$ @UV)


Electrostatic locking test

locking pressure: 600 N/m2

LATT scaling: from secondary to primary

- @same optical area:
 - Larger actuator density is feasible (no optical compression)
 - Lower print-through (dispersed on larger area)
- @same actuator density:
 - Larger correction range (lower local stiffness: p vs p')
 - Lower power-budget (lower local stiffness)
- Easier manufacturing, no miniaturization


Why a LATT-like *primary* mirror is attractive

- 2 in 1: <u>active element + lightweight < 22kg/m²</u>
 - low areal density compared to existing systems
 - no need to develop novel lightweight technologies
 - No relay, no additional optics, simple design
- Very low power consumption
 - <55mw for each act
 - 15W for control electronics
- Natural solution for segmented mirrors
 - Alignment+phasing allocated to active optics
 - Act stroke & accuracy relax deployment tolerances
 - Complex mirror topology: local correction is easier

Conclusion

- Thin shell + voice coil acts + capac.sensors: well established technology for AO mirrors
- LATT:
 - Spherical primary mirror, 40cm diam, F/6
 - 19 acts, 55mW/act
 - CFRP+AL honeycomb+thin zerodur shell: <22kg/m²
- LATT demonstrated its applicability to space:
 - lightweight shell ←→ launch stresses
 - Low power budget ←→ shell controllability
- LATT demonstrated the concept of:
 - Active + lightweight space primary (2 in 1)
 - Suitable to segmented/deployable systems

LATT: a brick for more complex systems

