

Laser Guide Star Wavefront Sensor prototype for the E-ELT: *some results*

M. Patti^{1,2}, M. Lombini², L. Schreiber², G. Bregoli², C. Arcidiacono², G. Cosentino¹, E. Diolaiti², I. Foppiani²

¹Universitá di Bologna – Dipartimento di Fisica e Astronomia ²INAF – Osservatorio Astronomico di Bologna

ADONALE OTTICA ADATTIVA

Main objectives

- Verify performance of LGS Shack Hartmann WFS under different working conditions (sampling, field of view, signal-to-noise ratio, algorithm type, Sodium profile features)
- Study low/medium order aberrations induced by Sodium layer coupled with spot truncation and other effects in the LGS WFS
- Verify the fidelity of numerical simulations that model the LGS image in the Shack Hartmann WFS sub-apertures

		10					-												145				83	63						
		4	д.			~			ų.	-		. ,							120			\mathbf{k}								
	k	2	7		1	ø			έ.	÷								-				-								
	ŀ				Γ	٠		4		ė.	-											5								
	e	1				è.	÷				a																			
A	•	ø		9																	3.5									
0		ŧ.,	•					à.	-																					
				ġ.	a.		1ġ		ar i																					
•	6	8	8												-															
																100		1.1											100	

Prototype scale

LGS 'seeing limited size'	Considering 1,5" \rightarrow 1.8 pixels FWHM
Pixel scale	o.83"/pixel
max FoV per Subaperture	19.9″
RON	15 e ⁻

Prototype configuration

-0

Laser launcher from the

telescope side

Firenze, 12-14 Aprile 2016

Accuracy of LGS image shapes on the SHWFS

Most elongated sub-aperture : resolves Sodium profile intensity variations when $\Delta H > 2 \text{km}$

AD O T T I C A AD A T I V A

Case of real Sodium density profile

Pfrommer, T., P. Hickson, and C.-Y. She (2009), "A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies", Geophys. Res. Lett., 36, L15831

- 1) Chose Sodium density profile
- 2) Associate SLM pixels to layer altitudes according to perspective elongation
- 3) Calibrate by SLM curve response

Perform first set of tests with realistic static Sodium density profiles

Truncated LGS images (~16" FoV) and 2 levels of atmospheric turbulence strength

Algorithm used : WCoG and Threshold centroid

Strong turbulence

Effect of truncation not significant

WCoG more stable and reliable algorithm

Real Sodium profile sequence to highlight the phase errors induced by the Sodium layer fluctuations

Test the idea to use the most elongated sub-aperture as a Sodium profile monitor. Such an 'in situ' tool could :

- prevent spurious aberrations, especially if a large spot truncation is foreseen.
- provide relevant sodium layer statistics that should correlate in a direct way with AO system performance at the telescope.

Firenze, 12-14 Aprile 2016

ADONALE OTTICA ADATTIVA

Firenze, 12-14 Aprile 2016

Conclusion

- Strong turbulence. When the AO loop starts, the low/medium order aberrations due to LGS image truncation and/or Sodium density variability are not significant.
- .Weak turbulence. Close to the AO loop convergence, LGS image truncation and/or Sodium density variability influence the WFS performance
- Sodium monitor. Useful to mitigate the wavefront sensing risks but not sufficient to avoid a reference WFS, based on NGS, to measure the LGS spurious aberrations
- *Near future.* Use the prototype to test the performance of Quad-cell (binning the detector) and Pyramid WFS (new optical channel)