New opportunities in optical testing given by photochromic materials

<u>Giorgio Pariani</u>, Martino Quintavalla, Rossella Castagna, Letizia Colella, Chiara Bertarelli, Frederic Zamkotsian, Andrea Bianco

Photochromic materials

Bertarelli, C., Bianco, A., Castagna, R., Pariani, G., J. Photochem. Photobiol. C: Photochemistry Reviews, 12(2), 106–125 (2011)

Photochromic Focal Plane Masks

- Photochromic polymer (6%) in PMMA
- 70 μm thick film

- large contrast in a specific spectral range of interest (Ha, Na,...)
- filters are needed to cover the entire spectral range
- easy to produce (with direct laser writing) and easy to use

Photochromic FPM @ Asiago Telescope

Bianco, A., Bertarelli C., Gallazzi, M.C., Zerbi G., Giro, E., Molinari, E., Astron. Nachr., 326(5), 370-374 (2005)

Process

make the element re-writable: it is a reconfigurable platform

Interferometry

- Amplitude Computer Generated Holograms for optical testing
- Photochromic Point Diffraction Interferometer

Computer Generated Holograms

CGH: binary representation of the interferogram between the spherical and aspherical wavefront under test. Each line adds $m\lambda$ of OPD and changes the wavefront slope by $\sin(\theta) = m\lambda/\Lambda$, Λ is the local line spacing.

REQs:	Line period	Λ = down to 1 micron	
	Accuracy	ϵ = 50 nm PV	
	Size	D = 150 mm	

Writing strategies

Direct Laser Writing scanning mode Objective Photochromic substrate Moving stages

- High pattern density/slow process
- High accuracy
- Compex system/very versatile

- Fast process/stitching for large areas
- Distorsions from projection
- Very versatile (according to the mask)

Amplitude Fresnel CGH – scanning mode

Test results

Fringes are well visible: the produced Fresnel CGH satisfies the basic requirements of optical quality and contrast **Other aberrations:** some errors are introduced by the film surface and by the accuracy of the written pattern

Pariani, G., Bertarelli, C., Dassa, G., Bianco, A., Zerbi, G., Optics Express, 19(5), 4536-4541 (2011)

Production with standard DLW – scanning mode

Production of photochromic CGHs at the Institut für Technische Optik - Universität Stuttgart

CLWS300M (Production System)

Smallest feature sizes:	< 1µm (binary)	
Max. substrate size:	Ø 300 mm	
Max. substrate thickn.:	25 mm	
Write speed (typ.):	on-axis: 9 mm/h	
	off-axis: 4 mm/h	
Wavelength:	457-488-514 nm	
Positioning increment:	radial: 0.6 nm	
	azimuthal: 1'' @ 600 rpm	

Results:

- High material resolution, up to the writing beam size
- High beam power may affect the surface
- Contrast low for the autofocus beam and wrong writing beam (at the limit of the material sensitivity)

A custom DLW machine is required!

Pariani, G., Bertarelli, C., Bianco, A., Schaal, F., Pruss, C., Proc. of SPIE, 8450(1), (2012).

Photochromic Point Diffraction Interferometer

Linnik 1933, Smartt 1972

Diffraction from a pinhole in a semi-transparent film

- Simple use: PDI is positioned in the focal plane of the optics under test
- Common path: very low sensitivity to vibrations and turbulence

Why a photochromic PDI?

Optical writing of the substrate:

- single step process, no post process required
- tunable transparency with irradiation time to maximize the fringe visibility

Why a photochromic PDI?

Optical writing of the substrate:

- single step process, no post process required
- tunable transparency with irradiation time to maximize the fringe visibility
- wide range of pinhole size to match the optics under test
 - Pinhole size tunable from 1 to 50 microns
 - The size depends on the photons dose
 - Auto-confinement of the beam inside the photochromic substrate

Why a photochromic PDI?

Optical writing of the substrate:

- single step process, no post process required
- tunable transparency with irradiation time to maximize the fringe visibility
- wide range of pinhole size to match the optics under test
- the pinhole may be written by the test optic!
 - no fine alignments required
 - —— continous monitoring easily possible
 - works properly for low aberrated optics

Results

self-referencing test

mirror at 0°

mirror at 180°

150mm dia., f_{μ} 2 spherical mirror 2.5 μ m pinhole dia.

orientation (deg)	PtV (nm)	RMS (nm)
0	128±15	27±3
180	126±16	22±3

Results

comparison with a standard Fizeau inteferometer

150mm dia., f_{μ} 2 spherical mirror

INT	PtV (nm)	RMS (nm)
Fizeau	144±9	29±2
PDI	132±15	26±3

absolute accuracy

Certified 150mm dia., $f_{\#}$ 8, $\lambda/8$ PtV and $\lambda/40$ RMS spherical mirror

40

30

20

10

0

-10

-20

-30

-40

-50

	PtV (nm)	RMS (nm)
SPEC	40	8
PDI	56±17	8.5±2