Development of devices and systems for adaptive optics

J.Mocci, R.Muradore, F.Mousavi, P.Vallone, P.Villoresi, <u>S.Bonora</u> CNR-Institute of Photonics and Nanotechnology, via Trasea 7, 35131, Padova, Italy Università degli Studi di Verona Università degli Studi di Padova

Aberrations in lasers

Aberrations from:

Deformable mirror technology

Piezoelectric bimorph DM

Converse piezoelectric effect PZT expands and bends the glas substrate

Advantages:

Possible to scale up the size, robust, any coating (metallic or dielectric)

40mm x 40mm Hilase

Pulse shaping

Adaptive optics activity

Our deformable mirrors: Bimorph (metallic or dielectric)

Applications:

Application of DMs to pulse compression and shaping ultrashort lasers UV, Vis, NIR and Mid-IR, High peak /High avg power lasers

S.Wall et al, Quantum interference between charge excitation paths in a solid-state Mott insulator, **Nature Physics**, 114-118, Vol. 7, 2011 REVIEW: D.Brida et al, Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers **J. Opt.** 12 (2010) 013001

DMs and Deformable diffraction grating for XUV ultrashort pulses

S. Bonora, et al. Active diffraction gratings: Development and tests, Rev. Sci. Instrum. 83, 123106 (2012);

Medical/microscopy imaging (2 Photons, OCT, confocal)

S. Bonora, et all "Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens," Opt. Express 23, 21931-21941 (2015) K.S.K. Wong, et al, "In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics o ptical coherence tomography", Biomed. Opt. Express 6, 580-590 (2015)

OCT In vivo retinal cones image In human eye

- ★ High power lasers
- Femtosecond lasers Pulse shaping
- ★ Medical Imaging

What we are asked for:

• High performance:

- Technical requirements:
 - Dimensioni 25mm 100mm (we are looking into 20cm DM)

involve industrial

partners

- Stroke >20um
- Damage Threshold > 20J/cm² (ns), > 5J/cm² (fs)
- Broad bandwidth and Low GDD (fs)
- Actuators 32 144
- Response time 10Hz (DM response time about 1ms)
- Vacuum compatible (10⁻⁴mbar)

• Quality

- Preliminary simulations -> DM desing
- Collaboration for installation/Participate to experiments
- Spares
- Quality ISO certification, Warranty
- Reliable electronics

Design example: Deformable mirrors for Hilase

J.Pilar, A.Lucianetti, S.Bonora

HiLASE project, Institute of Physics AS CR, Na Slovance 2, 18221, Prague, Czech Republic CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy

High average power cryogenically-cooled diode-pumped solid-state laser system

Developed deformable mirrors for:

Hilase (Czech republic) and Dipole (UK)

Energy: 10J Duration: 10ns Rep rate: 10Hz Size: 27mm x 27mm, Wavelength: 1030nm 7x7 actuators

HiLASE & ELI Beamlines

Current and future high-energy laser facilities

Simulations and DM design

Figure 20. The actuator layout of the DM.

- 1) Jan Pilar, et al, Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE), Applied Optics, Vol. 53, Issue 15, pp. 3255-3261 (2014) * selected by the Editors, for publication in the Virtual Journal for Biomedical Optics (VJBO), Vol. 9, Iss. 7 Jul. 9, 2014
- 2) A.Lucianetti, et al, Design of a kJ-class HiLASE laser as a driver for inertial fusion energy, High Power Laser Science and Engineering, (2014), Vol. 2, e13

DM characterization

Zernike polynomials

MAX STROKE AND HYSTERESIS

- Material used for active layer of DM: PZT
- PZT exhibit hysteresis cca 20%
- The maximal DM surface deflection:
 - ~ -42µm +32µm

Closed loop working

Comparison of the laser spot before and after the closed loop activation

Our recent DMs for High Power laser

Pisa (ITA) ILIL lab 5J, 800nm, 100fs 75mm aperture Virgo (ITA) 2W, 10.6um, CW 144 actuators

Livermore 0.85ns, 740-900nm, 0.5J Low GDD <100fs² 5J/cm²

Adaptive lens and application in sensorless microscopy

Adaptive lens: properties

18 pzt actuators outside the clear aperture Optical power: 1.4D

Clear aperture: 10mm Transmission: visible NIR (TBM)

Initial aberration: 0.22waves rms Corrected with about 25% rms voltage range

Technology: PZT bimorph Voltage range: -125V/+125V

Generates aberrations up to the 4th order

Adaptive lens mounted on a camera objective

Closed loop control with wavefront sensor

Closed loop and Far Field

It is then possible to generate any aberration up to the 4th Zernike order

Use of the Adaptive Lens in in-vivo imaging

Key elements:

- Wavefront sensorless algorithm
- An adaptive lens that can replace a deformable mirror

Key properties of the adaptive lens:

- **Open loop control**: we need to operate the Adaptive Lens without the wavefront sensor!

- In Vivo: fast response time!

Scan sequence

Relaxation time: 5 oscillations +/- about 300ms

11 points per aberrations

«Astigmatism»

Defocus

Coma

Spherical Ab.

Trefoil

Adaptive Lens: Compact OCT Opthalmoscope

System realized at the Simon Fraser University (Vancouver)

Figure 1 Schematic diagram of MAL-WSAO-SS-OCT system

(b)

(c)

Electronic driver

Electronics MUST BE: reliable, easy to use, compact Integrate the electronic inside the DM

Orbital Angular Momentum (OAM) of light

F.Mousavi, P.Villoresi, G.Vallone

Total angular momentum of light beam in the paraxial approximation is split into SPIN (polarization) and Orbital Angular Momentum (OAM)

 $J_z = J_z^{\rm spin} + J_z^{\rm OAM}$

The OAM is related to the phase $e^{im\Phi}$ (with integer *m*) in the transverse plane. The wavefront becomes a spiral and the intensity has the typical "Donuts" shape

Adaptive optic for OAM

- Deformable mirrors can correct wavefront aberration induced by turbulence
- The information encoded in the different OAM states can be preserved in free-space as demonstrated by the recent quantum communication protocol realized with OAM at a distance of 210 m

• Km scale distances require the use of adaptive optics

OAM in Free-space

 Since the OAM in related to the beam wavefront, turbulence may alter the OAM content (see right images)

10 cm

Active projects

- DM for CW fiber lasers 2kW Salvagnini Spa
 - Cutting and welding
- Adaptive Lenses Ophtalmic and Vision
 - UC Davis, SFU
- Fast Wavefront sensor
 - University of Verona
- DM for XUV synchrotron radiation (13nm 100nm)
 - Desy, Hamburg
- Integrate the electronic inside the DM
- Develop larger DMs: 20cm diameter

Thank you! stefano.bonora@dei.unipd.it