

The natural guide star module for MAORY (& a SCAO system for HIRES)

Adoni workshop

Firenze, 12th-14th April 2016

LABORATORIO NAZIONALE ADONALE O T T I C A ADATTIVA

Intoduction

MAORY kick off meeting, Bologna Feb 2016 (talk by P. Ciliegi on 12/4)

In the next slides:

- 1. Summary of activities done so far on NGS module sub-systems (mainly during the «T-REX phase»)
- 2. Task and resources organization for Phase B
- A hit to a SCAO system for HIRES

MAORY

- Post-focal AO facility of the EELT installed on Nasmyth platform
- Will serve MICADO imager and spectrograph + a 2° gen. instrument

MICADO main specs:

Wavelength coverage:	NIR (1.0–2.4 μm)
Field of view	53x53 arcsec
Spatial resolution:	6-12 mas
Spectral resolution:	R~8000

Firenze, 12-14 April 2016

MAORY MCAO mode

From MAORY SoW:

The baseline for E-ELT <u>1st light</u> <u>science</u> is for MICADO to operate behind the MAORY MCAO system.

From technical specification MAORY MCAO should provide:

- 30% SR in K-band under median seeing conditions [R-MAO-82]
- 10% SR variation across MICADO field [R-MAO-85]
- 50% sky coverage at galactic pole [R-MAO-74]

MAORY layout

Actual design is based on:

3x DMs based on voice coil technology (M4 + 2 post-focal)

6x LGS WFS to perform tomographic measurement of atmosphere

3x NGS sensors to measure the atmospheric tip-tilt component 3x NGS reference sensors to to compensate for LGSs drifts, plate scale variations

Low-order and reference (LOR) unit INAF - Arcetri

NGS module volume (Green Doughnut)

The NGS WFSs are placed in a dedicated module between MAORY and MICADO (NGS module):

- Co-rotating with MICADO
- Attached to MAORY bench or MICADO (depending on MAORY optical desing)

LOR unit functionality

The basic layout for MCAO NGS WFSs was already addressed in T-REX:

- NGS pickoff with mirror on a 160" doughnut around MICADO FoV
- 1. Tip-tilt (low order) sensor:

Trade-off study was performed simulating different geometries (2x2, 3x3, 5x5 Sas), VIS or IR (OCAM or Cred detectors), NGS color and mag.

 \Rightarrow Best solution identified was a SH 2x2 IR sensor

2. Reference sensor:

- Basic functionality is to work as slow reference sensor to de-trend LGSs wavefront estimate of low order modes
- Option to add NGS-MCAO functionality (useful in early commissioning and science phases to remove the complexity related to LGS on EELT)

Ref. only	Ref. + NGS- MCAO		
 SH WFS 5x5	 Pyr. WFS 80x80		
(10x10?) Slow (1-	(binnable) Fast		
10Hz)	(1kHz)		

LOR unit concept

Outcome of T-REX:

- The low order and reference sensors will share a common support structure
- Using polar coordinate stages at 120° geometry will maximize SC
- Dichroic will split between IR (LO) and VIS (Ref)

LOR unit Phase B

MAORY Phase B started with KOM on 2 Feb 2016

Work packages for LOR preliminary design have been identified:

- LOR unit specifications
- Optics preliminary design (REF and LO branches)
- Preliminary mechanical design and finite element analysis
- Motorized functions, cabling and control electronics
- Preliminary assembly and Alignment procedures and tools
- Analysis of the REF NGS WFS camera and controller requirements
- Analysis of the LO NGS WFS camera and controller requirements
- Preparation of the specifications and interface documentation of the REF and LO WFS cameras and controllers

M&M SCAO mode

From MAORY SoW:

A SCAO mode within MAORY is needed for full scientific exploitation and for meeting the E-ELT TLRs.

A SCAO mode will also be useful in a phased approach for optimizing AO performance of the MAORY/MICADO system once at the telescope.

This development should be a joint endeavour between the MAORY and MICADO consortia [...]

M&M SCAO WBS

- WBS approached in Feb 2016 meetings
- Arcetri and LESIA will share the work under MAORY/MICADO management

SCAO unit functionality

Several technical requirement for SCAO were already identified during T-REX:

- NGS pickoff w/in MICADO FoV => dichroic is required
- Full FoV patrolled w/ linear stages
- Trade-off study based on numerical simulations to identify performance of PWFS 80x80 Sas:

NGS module concept

- **3x LOR units** (for MCAO) at 120° to maximize SC (req. 50% at galactic poles) and fixed to baseplate to reduce differential flexures wrt MICADO
- **SCAO module** (WFS + dichroic) has a dedicated volume slice
- Independent service distribution (Eth., Pow., Cables, ...) for the 2 subsystems to minimize interface with MCAO sub-systems
- Control and RT electronics is ouside (part is co-rotating, part is outside rotator)

NGS module support structure

Firenze, 12-14 April 2016

SCAO support structure

NGS module Phase B

- Work packages have been defined for all project phases
- Work load for each task have been evaluated Example of Phase B:

WP ID	WP Title	Duration [caly]	Work [py]	Work [%]
E-MAO-ADM-1100	NGS WFS Module Management	2,00	1,61	80%
E-MAO-ADM-1200	NGS WFS Module Engineering	2,00	4,92	2 46%
E-MAO-ADA-1100	NGS WFS Module Support Structure Design	2,00	1,18	59%
E-MAO-ADB-1100	LOR WFS Units Design	2,00	2,36	118%
E-MAO-ADC-1100	SCAO WFS Unit & Dichroic Unit Design	2,00	2,60	130%
E-MAO-ADD-1100	NGS WFS Module Control & Calibration SW Design	2,00	1,61	80%
E-MAO-ADE-1100	NGS WFS Test & Calibration Tools Design	2,00	1,44	72%

Phase B: end date 02/08/18, duration 2.0 calendar years from KOM

total person years 15,72 ~ 8 persons full time

1 person year = 211.5 working days work [%] = work[py] / duration [y]

Involved personnel (INAF - Arcetri)

- Arcetri personnel identified for the NGS module development
- 2 positions opened (Software + AO engineer)

Name	Position	Task	
A. Riccardi	Senior Researcher	Prog.Manager/AO Eng.	Ρ
S. Esposito	Senior Researcher	AO Expert/AO Eng.	Ρ
M. Xompero	Researcher	Managing/AIT	С
M. Lauria	Administrative	Adminitrative Repres.	С
L. Fini	Senior Researcher	Software	Ρ
L. Carbonaro	Technician	Mechanics	Ρ
M. Bonaglia	Post-Doc	Optics/AIT	С
V. Biliotti	Technician	Electronics	Ρ
A. Puglisi	Technician	Software/AIT	Ρ
L. Busoni	Researcher	Sys Engineer/AIT	Ρ
C. Giordano	Post-Doc	Num. Simulations	С
G. Agapito	Post-Doc	Num. Simulations	С
C. Del Vecchio	Senior Researcher	FEA	Ρ
D. Ferruzzi	Technician	Optics	С
R. Briguglio	Post-Doc	AIT	С
G. Di Rico	Post-Doc	Software/Electronics	С
TBH-SE	Post-Doc	AO Engineer/AIT	С
TBH-SW	Post-Doc	Software/AIT	С

P = Permanent Staff C = Contract Staff TBH = To Be Hired

Conclusion

- The conceptual studies of the NGS module (LOR & SCAO units) performed during T-REX phase have identified useful guide lines for preliminary design
- MAORY Phase B had official start with KOM of 2 Feb 2016
- Definition of specifications for LOR units (fast TT + reference sensors) are ongoing together with trade-off studies to define their functionalities
- The SCAO module WBS is available, task have been identified and shared between INAF – Arcetri and Lesia
- The task allocation for phase B to involved personnel have been addressed (2 positions opened: SW + Sys. engineering)

~

v

v

INAF

Osservatorio Astrofisico di Arcetri

Borse - Contratti - Concorsi

In questa pagina vengono pubblicati avvisi relativi a borse di studio e posizioni a concorso presso l'Osservatorio di Arcetri.

Studio di dischi protoplanetari attraverso Osservazioni (sub)millimetriche ALMA

08-01-2016

Properties of surface materials of primitive carbon-rich asteroids to support OSIRIS-REX mission

19-02-2016

SKA-CSP software prototypes development

03-03-2016

ADAPTIVE OPTICS Software Engineer

08-04-2016

 System Engineering for Adaptive Optics projects of Large and Extremely Large Astronomical Telescopes

Storia e Beni Culturali

Ricerca

Progetti

Seminari

Servizi

Biblioteca

WebMail

Didattica e divulgazione

Workshops e corsi Gare e concorsi

The HIRES project

- ✓ HIRES: high resolution spectrograph for the E-ELT capable of providing a spectrum at R~100,000 over 0.4-2.5 µm
- HIRES consortium composed of institutes from 12 countries
- Italy (INAF lead technical institution, PI A. Marconi)
- Brazil, Chile,
 Denmark, France,
 Germany, Poland,
 Portugal, Spain,
 Sweden,
 Switzerland,
 United Kingdom
- HIRES consortium awarded Phase A study by ESO
- ☆ kick off 22/3/16
- end by 22/3/18

Science Cases to be addressed

- Exoplanets (characterisation of Exoplanets Atmospheres: detection of signatures of life)
- Stellar Astrophysics (abundances of solar type and cooler dwarfs in galactic disk bulge, halo and nearby dwarfs: tracing chemical enrichment of Pop III stars in nearby universe)
- Intergalactic Medium (Signatures of reionization and early enrichment of ISM & IGM observed in high-z quasar spectra)
- Fundamental Physics (variation of fundamental constants α , m_p/m_e Sandage Test)
- Protoplanetary Disks (dynamics, chemistry and physical conditions of the inner regions)
- Stellar Populations (metal enrichment and dynamics of extragalactic star clusters and resolved stellar populations)
- Galaxy Evolution (massive early type galaxies during epochs of formation and assembly)
- Supermassive Black Holes (the low mass end)

Community White Paper: Maiolino et al. 2013, ArXiV:1310.3163

Instrument concept

 4 independent fibre-fed spectrometers optimised over 4 spectral ranges (UB, VRI, YJH, K): simultaneous coverage 0.31-2.5 μm

Backup slides

MAORY milestones

Milestone	Phases – Key milestones	Due Time
Number		
1	Kick Off Meeting	2016-02-02
2	Preliminary Design Review (PDR)	2018-02-02
3	Final Design Review (FDR)	2019-08-02
4	Preliminary Acceptance Europe (PAE)	2024-02-02
5	Provisional Acceptance Chile (PAC)	2025-08-02
6	Final Acceptance (end of Guarantee period)	2027-08-02

Phase B: Preliminary design (24months)

NGS module management

NGS module engineering

NGS module support structure

LOR WFS unit

SCAO WFS unit & dichroic

NGS module control & calibration SW

NGS module test & calibration tools

SCAO WFS unit and dichroic design shared with MICADO

Phase C/	D: final
design ar	Id MAIT

NGS module management

NGS module engineering

NGS module support structure

LOR WFS units

SCAO WFS & dichroic

NGS module Control & Calibration SW

NGS module test & calibration tools

NGS module AIT

Phase E: Commissioning NGS module reintegration on site Phase B: PDR Phase C/D: FDR and M

LOR unit Phase B

+ES+ 0 +	MAORY Project Management Plan	Doc: Issue: Date: Page:	E-PLA-INA-MAO-0001 2DX XXXXXX 5 of 20
----------------	----------------------------------	----------------------------------	--

Feb 2015

WORKPACKAGE	LOR WFS Units Design	E-MAO-ADB-1100		
WP manager	L. Busoni	INAF OAA		
Deputy WP mgr.	M. Bonaglia			
WP description	Specification and preliminary design of t	Specification and preliminary design of the MAORY Low Order and Reference (LOR)		
	WFS units including the WFS camera spe	ecification		
WP required input	1. Preliminary optical interface between	en MAORY and MICADO		
	2. Preliminary mechanical interface be	etween MICADO and NGS WFS module		
	3. REF and LO WFS camera requireme	nts from the provider		
	4. Preliminary interface documentation	on covering the electrical, thermal and		
	mechanical interfaces to the camer	a and controller		
	5. Preliminary communication interfac	ces to the MAORY RTC		
Tasks included	1. NGS WFS unit specifications			
	2. Optics preliminary design (REF and I	LO branches)		
	3. Preliminary mechanical design and f	finite element analysis		
	4. Motorized functions, cabling and co	ntrol electronics		
	5. Preliminary assembly and Alignmen	t procedures and tools		
	 6. Analysis of the REF NGS WFS camera and controller requirements 7. Analysis of the LO NGS WFS camera and controller requirements 8. Preparation of the specifications and interface documentation of the REF an LO WFS cameras and controllers 			

LO numerical simulation

Simulation studies the median condition case where a baseline of 30% SR in K band is required. Goal is 40%. E-ELT site median values for seeing conditions are assumed. tech. Specs includes 145nm of telescope aberration as additional disturbance

seeing median value of 0.67 arcsec effective wind speed 10 m/s

Input wavefront pre-corrected to 40% K band SR (335nm rms)

VIS case (CCD220)	IR case (CRed detector)
2step CoG	2step CoG
FoV 1.2"	FoV 1.0"
# of pixel 12	# of pixel 50
2 nd step FoV 6x6pixel	2 nd step FoV 4x4pixel
bw 300nm	bw 300nm
wl 700	wl 1650
sky 34	sky 921
ron 0.37e-	ron 1.0e-
fps 200	fps 200

of subaps explored with simulations:

2x2

3x3

5x5

LO simulation of performances (2x2 subaps)

Rmag ref. star	VIS	IR (col=1)	IR col=2	IR col = 3
baseline	19.5	19.7	20.7	21.7
goal	18	18.7	19.7	20.7

EE and profiles shown are the ones on the first raw of the grid

SCAO unit concept

- An optical sketch with Pyramid WFS (80x80SAs) using OCAM detector
- NGS pickoff from science field with dichroic + fold mirror
- Linear stages are needed to patrol full FoV

SCAO & Dichroic Units concept

- SCAO + Dichroic occupy an "independent" slice of GD volume
- SCAO + Dichroic are on a common support structure -> single interface, less diff. flex.
- Independent supplies lines directly from SCAO cabinets
- Slidable dichroic on bottom, SCAO on top
- Parked SCAO leaves LOR FoV unobstructed

SCAO FoV

- SCAO needs to patrol a FoV of 53x53" and to leave unobstructed the LOR WFS pickoff area
- Solutions with XYZ stages or XY + pistonable mirror are under study
- The use of a pickoff mirror instead of direct feed may reduce SCAO footprint on LOR WFS

SCAO Unit

- Tip-tilt stage allows to compensate for chief-ray tilt due to finite pupil distance (TBQ)
- Large FoV camera (TBC)
- Internal light source for fast functionality checks

Components

- SCAO is based on modualted Pyramid concept
- 2" FoV, F35 => 6mm/" on pyramid
- ADC sketched (ABA-ABA layout)
- Pupil derotator (K-mirorr or Dove prism)
- Doble glass pyramid

